Vol. 14(2): 57–60 FOLIA MALACOLOGICA ISSN 1506-7629 The Association of Polish Malacologists & Faculty of Biology, Adam Mickiewicz University Poznań 2006

FURTHER STUDIES ON THE EFFECT OF PLANT INFUSIONS ON THE FEEDING OF *DEROCERAS LAEVE* (O. F. MÜLLER, 1774)

EWA DANKOWSKA, JOANNA BENDOWSKA

Chair of Plant Protection Methods, Agricultural University, Zgorzelecka 4, 60-198 Poznań, Poland (e-mail: kmor@post.pl)

ABSTRACT: The effect of ten plant infusions on feeding of a pest slug *Deroceras laeve* (O. F. Müll.) was tested in laboratory conditions. Infusions of ginger, cumin, garlic and dropsy were found to limit the slug feeding, while oregano infusions stimulated it.

KEY WORDS: pests, slugs, Deroceras laeve, feeding, plant infusions

INTRODUCTION

New methods and possibilities of protecting crops from slug feeding are still being sought. Recently, infusions or extracts of various plants have been increasingly used (KOZŁOWSKI et al. 2004, DANKOWSKA 2005, PISAREK 2005). A great majority of higher plants produce chemical compounds which may affect living organisms. They may to a lesser or greater extent limit feeding of many animal species (ŁAKOTA & KWIAT-KOWSKI 1993). At the same time, they as much less harmful to the useful entomofauna and to humans, compared to synthetic compounds.

The aim of this study was to test infusions of 10 spice or aromatic plant species with respect to their effect on feeding of *Deroceras laeve* (O. F. Müller, 1774).

MATERIAL AND METHODS

The experiments were conducted in the Chair of Plant Protection Methods, Agricultural Academy, Poznań. They consisted in laboratory testing of infusions of cumin, ginger, basil, savory, oregano, thymes, marjoram, mint, garlic and dropsy. Portions of 5 and 10 g of dry plant matter were poured over with 100 ml boiling water and left covered for 24 hours. Following filtering through filter paper, fragments of white cabbage leaves (Brassica oleracea var. capitata) of 3×3 cm were dipped for 5 minutes in the infusion, and then placed in Petri dishes of 10 cm diameter, lined with three layers of damp filter paper. The leaves from control dishes were dipped in water. Each combination was run in four replicates, using five slugs of the same age and size. Prior to placing in the dishes and after the experiment (7 days) the leaves were weighed.

The following parameters were calculated based on the data: percentage of consumed leaf mass, palatability index (ratio of consumed mass of infusion--treated leaf to mass of non-treated leaf) and absolute deterrence index (ADI). Adi was calculated according to the formula of KIEŁCZEWSKI et al. (1979).

$$ADI = \frac{(K - T)}{(K + T)} \times 100$$

K – mean mass of control leaf consumed (mg)

 $T-mean\ mass of leaf of a given combination consumed (mg)$

The results were statistically analysed with Duncan test at $\alpha = 0.05$.

RESULTS AND DISCUSSION

A comparison of the effect of the studied infusions on feeding of *D. laeve* based on the difference in the consumed leaf mass is presented in Table 1, and based on the percentage of consumed leaf mass, palatability index and ADI – in Figs 1, 2 and 3.

The effect varied between the infusions (Table 1, Figs 1–3). The infusion of 5 and 10 g ginger gave the best results. The percentage of mass consumed was 11.35 and 11.67, respectively, the palatability index 0.46 and 0.47, and Adi 14.31 and 18.49. The proportion of leaf mass consumed was also small when using

infusions of 5 and 10 g cumin (13.04 and 16.13), 5 g garlic (17.75) and 10 g dropsy (15.11). In the case of oregano infusions, the proportion of leaf mass consumed was high and amounted to 47.48 and 42.40, while the palatability index was close to 2.

In laboratory conditions the infusions of ginger, cumin, garlic and dropsy limited feeding of *D. laeve*, but these results should be tested in greenhouse conditions. Oregano infusions, on the other hand, had a stimulating effect on the slug feeding.

Table	1.	Effect	of	plant infusions	on	the n	nass o	of	leaf	consumed		oy I	Deroceras	laeve
-------	----	--------	----	-----------------	----	-------	--------	----	------	----------	--	------	-----------	-------

I. Constant	Mean leaf mass [mg]							
Infusion	initial	final	difference					
Cumin 5 g	2.814	2.360	0.454 abcd					
Cumin 10 g	3.406	2.962	0.444 abcd					
Ginger 5 g	3.743	3.318	0.425 a					
Ginger 10 g	3.341	2.951	0.390 abc					
Basil 5 g	2.439	1.836	0.603 bcde					
Basil 10 g	1.930	1.137	0.793 ef					
Savory 5 g	2.663	1.918	0.745 def					
Savory 10 g	2.458	1.712	0.746 def					
Oregano 5 g	1.470	0.772	0.698 cde					
Oregano 10 g	2.396	1.380	1.016 f					
Thymes 5 g	2.601	2.098	0.503 abcde					
Thyme 10 g	1.984	1.486	0.498 abcde					
Marjoram 5 g	2.195	1.467	0.728 def					
Marjoram 10 g	2.651	2.014	0.637 bcde					
Mint 5 g	2.020	1.533	0.487 abcde					
Mint 10 g	1.935	1.489	0.446 abcd					
Garlic 5 g	1.961	1.613	0.348 ab					
Garlic 10 g	1.708	1.150	0.558 bcde					
Dropsy 5 g	2.518	1.893	0.625 bcde					
Dropsy 10 g	3.242	2.752	0.490 abcde					
Control	2.286	1.719	0.567 bcde					
NIR – LSD			0.268					

a, b, c, d, e, f – means marked by the same letter are not statistically different according to Duncan test ($\alpha = 0.05$)

Fig. 1. Percentage of leaf mass consumed by Deroceras laeve

Fig. 2. Palatability index for the studied plant species

Fig. 3. Absolute deterrence index for the studied plant species

REFERENCES

- DANKOWSKA E. 2005. Deterrent effect of plant infusions on Deroceras laeve (O.F. Müll., 1774). Folia Malacol. 13: 105–108.
- KIEŁCZEWSKI M., DROŻDŻ B., NAWROT J. 1979. Badania nad repelentami pokarmowymi trojszyka ulca (*Tribolium confusum* Duv.). Materiały XIX Sesji Naukowej Instytutu Ochrony Roślin: 367–374.
- KOZŁOWSKI J., WALIGÓRA D., NAWROT D. 2004. Wpływ wyciągów z roślin zielarskich na żerowanie Arion lusitanicus (Mabille) na siewkach rzepaku oleistego. Prog. Plant Protection / Post. Ochr. Roślin 44: 865–869.
- ŁAKOTA S., KWIATKOWSKI M. 1993. Możliwości wykorzystania związków pochodzenia roślinnego do zwalczania szkodliwych owadów i patogenów roślin. Pestycydy 1: 29–33.
- PISAREK M. 2005. Laboratoryjna ocena przydatności czosnku do zwalczania ślimaków nagich z rodzaju *Arion*. Prog. Plant. Protection / Post. Ochr. Roślin 45: 997–999.

